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ABSTRACT

Industrial sound sources have complex radiaton characteristics and therefore their description by means
of numerical simulation can only be made with sophisticated numerical models. In the low frequency ranges,
these models must be able to represent accurately the diffraction phenomena whose effects are very important
on the radiated sound field. This article presents reconstrucion methods of the sound source radiation
characteristics represented by the acoustic power of its distinctive elements. A reconstruction method consists
of identifying the parameters of a given numerical model used to simulate the source radiadon. The results of
the reconstruction are presented for various near field given data used in the identification process such as
complex sound pressures and complex sound intensities. Various sound source configurations have been
studied with various radiation models. The most interesting results were obtained with a finite difference
model which allowed the computation of the sound field in a given enclosure. Identification techniques based
on various minimization functionals have also been tested. In general, the results show the identification made
with sound intensity is far superior than that made with sound pressure data. Moreover, when the simulaton
model only takes into account the geometrical characteristics of the source without consideration of the
environment such as the other machines and/or the enclosure boundaries, the identification made with pressure
daw is quite inaccurate whereas the identification made with sound intensity remains acceptable.

INTRODUCTION

Many fields of physics such as acoustics are concerned with the analysis of systems in which fields are
generated by external sources. Solving the subsequent equations generally requires a sophisticated computer
model. The function of this model is very simple : for a given set of sources, of geometrical parameters and/or
of boundary conditons, it allows one to determine the fields generated by the given set of sources in their
definition domains. For most of this type of problems, the data being measured are only field data and there is
often little knowledge about the sources. The identification process is a mathematical tool [1] which enables
one to find more informations on these elements that are not directly accessible with measurements, for
example : the sources.

Let a sound field generated by sound sources be measured at discrete points of a definition domain. Let
also the sound sources be represented by parameters and let the computer model be able to determine the:
resulting acoustic field. The identification consists of finding the source parameters that generate a sound field
which most closely matches the measured sound field. In other words, a real set of sound sources can be
identified to a modelled set of sound sources if they generate similar sound fields. Four elements are important
1n this approach :

- the parametric representation of source radiation ,

- the nature of the measured data in the sound field,
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- the numerical mode! that links the source parameters to the measured data,
- the mathematical process of optimal identfication of the sources parameters.

In this study, the measured data used to represent the sound field for sound source identification
purposes are :

- the acoustc pressure,

- the acoustic intensity. _ . _ .
These data allow one to partially describe the sound field, but however lead to different identification results
due to their different nature. This particular aspect of sound source identification will be emphasized in this

paper.
POINT SOURCES IN FREE FIELD

In order to understand the principles of the sound source identification process, it is tested in the simple
case of point sources radiation. The question is the following : is it possible to reproduce the sound field
generated by a given set of point sources by means of another set of point sources ? The corollary to this
question is : what should one measure to obtain the best sound field reproduction and therefore the best sound
source idendfication ?

Each of the considered point source in free field is defined by its coordinates and its complex magnitude.
The considered source parameter used in the identification is its complex magnitude. Three kinds of
measurements are supposed to be accessible :

- the complex acoustic pressure,

- the modulus of the complex acoustic pressure,

- one of the components of the active intensity vector. ,
For each kind of measurement, one should expect a specific identification result in terms of source magnitude.
The following diagram illustrates the identification principle.

: Computed field
Source parameters Computer model pressure, pressure
(complex magnitudes) (radianon of the > (m&ﬁ‘ aclive intensity)
modelled sources)

Functional
of error to be

comparison :
computed field

measured field minimized
Measured field
(complex pressure, pressure
modulus, active intensity) Optimal

The mathematical properties of an error functional depend upon ‘the nature of the measured field. In
particular, on shows that the error functional defined from complex acoustic pressures is convex whereas the
functonal defined with acoustic intensity is not. In each case, one should use an appropriate minimization
algorithm. If the functional is convex, a classical generalized inversion technique can be used. On the other
hand, if the functional is not convex, one should set up constraints on the minimization technique and
therefore use an iterative process (2,3,4].

In this numerical study, the measured acoustic field is in fact a computed field called a reference field.
that results from a given set of sound sources called reference sources. Therefore, there are two kinds of
fields : the reference field and the identificadon field, and there are two kinds of sources : the reference
sources and the idendfication sources.
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The exact solution of the Helmholtz equation :
2 n
(A+Kk)p = D ABM)
=1
for a given set of n, point sources with complex magnitudes A, is the following :

n, eikr(M-M)
POV = 3, A, M)

j=1

The complex acoustic intensity vector generated by this point source distribution is :

. .3, _IoMM) a3, oMM) { .
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The chosen excitation frequency is 340 Hz so that the wavelength A is 1 m. The space domain in which
the point sources are distributed has a characteristic dimension of half a wavelength. The reference sound field
is computed for 6 reference points sources arbitrarily distributed in this domain. The identification sound fields
are obtained after minimizaton of a given functional, for 8 identification point sources arbitrarily distributed in
this domain. The n,=104 measurement points are regularly distributed at a spherical surface, centered at the
average center of tﬁc reference source distribution. The radius of this measurement spherical surface is 2 m,

that is 2A.

Two different error functionals, expressed in terms of the complex magnitude vector A of dimension

n,=8, have been defined. The first one ¢,(A) represents the averaged error between the two pressure squared
modulus fields, the reference field pr and the idendfication field p':

n
¢, (A) = 2[@?‘@)) picA) - 0D pL]’
k=1

The second one ¢1(A) represents the averaged error between the two normal active intensity fields, the
reference field I' and the identdfication field Ii :

n
. 2
OfA) = 2[ LA -1 ]
k=1

These two functionals are not convex, and therefore they may possess many minima. The same
initialization vector A is chosen for both minimizations. The minimization algorithm used is the so called "trust
region method" (3]. It has the great advantage of stability. It always finds the minimum of a given non convex
functional that is the closest from the initial vector A. It is inspired from known gradient methods such as
conjugate gradient or quasi-Newton methods. Its principle consists in finding a local quadratic approximation,
tangent to the functional at the current iteration point for each iteradon. The size of the trust region is then
defined by linear constraints according to the quality of the local approximaton : the better the quality of the
approximadon, the larger the trust region.

Figure 1 shows the convention used for the representation of the sound pressure level observed at the

measurement spherical surface. The sphere is developed on a rectangular plane so that its two polar points are
represented by the lower and the upper horizontal lines.

Figures 2 sents the sound pressure levels observed on the spherical surface for the 6 reference point
sources. Figure 3 represents the identificaton sound pressure levels calculated after minimization of the

pressure error functional ¢p(A). Figure 4 represents the identification sound pressure levels calculated after

minimization of the intensity error functional ¢;(A). The interesting aspect of this result is that the minimization
of the active intensity functional leads to a bertter representation of the reference source radiation than the
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minimization of the pressure functional. In this numerical test, the first identification process that tries to
reconstruct a sound pressure modulus field leads to a wrong radiation pattern in terms of sound pressure
levels, whereas an identification process that tries to reconstruct an intensity field leads to a good
approximation of the reference radiation pattern. If this remark is valid in a free field configuradon, it will also
be true when non free field configurations are considered as shown in the next part.

SOURCE RADIATION IN AN ENCLOSURE

A finite difference approximation is used to solve the Helmholtz equation. The enclosure is rectangular
and the source is represented by a rectangular block with constant velocity magnitudes on each of its six faces.
The dimension n, of the sousce vector A, denoted [A]™, is therefore equal to 6. To solve the Helmholtz

uation using discretization techniques such as finite difference, one must solve the following linear system
:gequations [(5]:

(H; [PI® = (E,,E,)q, [A]™
where n is the overall dimension of the discretizaton and P represents the coordinates of the acoustic pressure
field in the discretization basis. [H] is the matrix representation of the Helmholtz operator in finite difference
approximation ; it is a square matrix with n rows and n columns. E; represents the set of the n basis vectors
of the pressure fields vector space. E, represents the set of the n, basis vectors of the velocity fields at the
surface of the source. For each independent unit basis vector vj, in the set E,, one can find an elementary
solution P; of the Helmholtz equation such as :

(H]; (P)" = (E,.vj)"
Let (P,] be the matrix defined by :
(BJy = 13" (Ep.Eva,
where [H-1] is issued from the inverse of the Helmholz operator matrix in which only the rows reladve to the
observation points have been kept. Therefore, [B,] represents the elementary complex sound pressures at the
np observation points and the sound pressure resulting from a given magnitude vector [A]™ is :
®™ = [RJ,’ (A™
This last matrix reladon is the source model associated to the identification problem. This source model that
has been established with a finite difference approximation could also be defined with other kinds of
approximation methods such as a finite elements or boundary elements methods. All the geometrical
characteristics of the enclosure as well as the acoustic boundary conditions such as impedance condidons, are
included in the source model.

From the source model giving the acoustic pressure, one can express the acoustic intensity at point k of
the observatdon surface :

Ik = [oJn, (A1] [[Q0Jn, (A1™]
where [Q,] is a matrix derived from the gradient of matrix (P,] components.

The reference complex pressures and the reference normal actve intensities are computed at a distance of

A/10 from the source surface (figure 5)-in six distinct planes parallel to the six faces of the rectangular source.

The distances between the source surfaces and the corresponding walls of the enclosure are roughly equal to
one wa'zlength.

In the various sound source identifications, the parameter that changes the acoustic configuration in the
computation of the error between the identification source model and the reference source model is the average

absorption factor a. For each numerical test, the impedances of the enclosure walls are defined so that each
wall has the same plane wave absorption factor a :
4 =
as= _——zzf 3 where gr x g
(Z+1) + 2y :

The difference between the reference absorption factor and the identification absorption factor allows one to
represent the distance between the reference model and the identification model. In the idendficaton source



model, the average absorption factor is always 1 so that it gives a rough approximation of the free field
radiation.

Three functionals are being considered.
a - The complex acoustic pressure functional : The first functional is quadratic in terms of complex acoustic
pressures ; it is therefore convex in terms of the vector [A] of complex sources magnitudes :

edA) = [RISIAI™- RIZAL™] [RIZIAI- RIZIAJ™)

The reference complex pressures are computed for a given vector [A,] of sources magnitudes and for a given
source model [P,] with a given average absorption factor in the domain {0.3, 1.0]. The identification complex
pressures are computed for a current vector [A] of sources magnitudes and for a given source model [P,] with
an averaged absorption factor of 1. The minimization of this functional is realized with a mean least square
inversion method. A direct algorithm is used to solve the corresponding linear system of equations :

n *q a -1 ‘n, n n
(A1 = [B)),) Ri,)] (B, [Ro),)(A™

b - The active acoustic intensity functonal : The second functional ex s the error between the reference
and the identification intensity fields ; it is not convex in terms of the vector [A] of complex sources
magnitudes and its minimum is not unique :

ey(A) = Z[[[&Jn, (A1™] [[Qdu.[A]m].‘ [[BOJn.[Ao]n'] [[QNJ“- [A°]n.]‘]l21e
k=1 ‘

Only the real part of the intensity is squared in this error functional. The reference active intensities are
computed for a given vector [A,] of sources magnitudes and for a given source mode] represented by [P,] and
[Q,] with a given averaged absorptdon factor in the domain [0.3, 1.0). The idendfication active intensities are
computed for a current vector [A] of sources magnitudes and for a given source model represented by [P;] and
[Q;] with an averaged absorption factor of 1. The minimization of this functional is realized with an iterative
technique : the trust region method.

c - jv ic i i i i [AA®] : The third functional is defined in terms of
vector [AA”] whose dimension is n,2 and whose general termis : (AA®), = A; A’ with m=(@-1)n;+j.
As for error functional ey, it expresses the error between the reference and the identification intensity fields ;
however, it is convex in terms of vector [AA"] and its minimum is unique :

[ n [ nz n, L] nz . n, ® nz n, [ n2
ed{AA) = Re [[Sdn; [AAT™ - [Sd 2 [AAG] ‘] Re [Lixlnz[AA 1" -S4 2 [AAG) ']

Only the real part of the intensity is squared in this error functional. Matrices{S,] and [S;] are derived from
matrices [P,] and [Q,], and [P;] and [Q,]. The reference active intensites are computed for a given vector
[AA*;] and for a given source model represented by (S,] with a given average absorption factor in the domain
[0.3, 1.0). The identification active intensities are computed for a current vector [AA*] and for a given source
model represented by [S:] with an average absorption factor of 1. The minimization of this functional is
realized with a mean least square inversion method. A direct algorithm is used to solve the corresponding
linear system of equations :

2

oql en. a1 e n, n . 2
(AAT™ = [18,) "184] ) (53] ° [SJ) ] [AA™
[ [ [
The dimension of this linear system can often be quite large due t; the change of the minimization variables.

Numerical Resylts

The acoustic power vectors [WJ™ , [Wp]™ and [W]™ obtained for the three functional minimizations
are compared to the reference power vector [W,]™. Four distinct vectors of the acoustic power of the source
surfaces are then computed for each considered value of the averaged absorption factor @. The reference
power vector [W,]™ is determined merely by computing the integral of the intensity mode! defined by matrices
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(Bo(a)] and [Q,(a)]. The others power vectors are associated to the three error functional minimizations,
namely :

d - errora: e,(A) - errorb:ey(A) - errorc: e (AA®) -
They are computed after the minimization of the corresponding error functional, using the components found
for vector (A) with error a and b and for vector (AA®) with error ¢. To compute the two vectors [W,]™ and
(W)™, matrices [P;] and [Q;] are used ; matrix [§;] is used to compute vector [Wc]". The computed
components of these power vectors are compared to the components of the reference power vector [Wol™ in

figures 6, 7 and 8, respectively associated to the following values of a : 0.9, 0.6 and 0.3. Figure 9 presents
the total acoustic power of the source determined for the reference configuration and for the error functional

minimization a, b and ¢, in terms of the various values of the averaged absorption factor & : 1.0, 0.9, 0.8, 0.6
and 0.3. This last illustration clearly shows the poor accuracy obtained by minimizing error functional a, due

to the large differences between matrices [Po()] and [P1] particularly when a is 0.3. When a is 1, all the

idendfication processes lead to the right reference powers as shown in figure 9. When a is less than 1, the
acoustc power of the source surfaces can be determined with an acceptable accuracy by minimizing error
functional b and c, particularly for the surfaces having large reference powers. In figure 8, the acoustic power
found for the surface source 2 with the minimization of error ¢ is 13 dB less than the reference power. This
result is due to the small value of the reference power of this surface compared to the power of the other
surfaces. The main conclusion of this numerical test is that it is possible to estimate the acoustic power radiated

by machine elements in low frequency ranges (when A is larger than or of the same order as the elements size)
when active acoustic intensity measurements are used with a model simulating the acoustic free field radiaton
of the machine.

CONCLUSION

The main observation of this study is the superiority of the intensity measurement over the pressure
measurement for sound source identfication. If the numerical model simulating the radiadon of the considered
source were perfectly accurate - it would mean that all the boundary conditons would be accurately defined -
the identfication process using pressure or intensity data would lead to the same accurate results : the actual
source magnitude distribution. However, since it is very seldom that the model is completely accurate, one
should try to find an opdmal approximation of the source radiation. The first part of this study shows that in
free field condidons, when the acoustic source is not well represented, the identificaton of its radiation can
lead to better result by using intensity level rather than sound pressure level measurements. The subsequent
minimization technique must however be very stable because the minimized functional is not convex. The so
called "trust region method" [3] that has been tested for this study seems to be quite efficient for this purpose.
The second part of the study deals with the problem of identifying a given sound source when the boundary
conditon in the model is not well represented. Again, the results illustrate the superiority of the intensity.
measurement over the complex acoustic pressure measurement. Moreover, it is shown that the tust region
minimization technique allows one to establish a good estimate of the power radiated by source elements. The
interesting aspect of the identfication methods are particularly obvious in the low frequency ranges with
reverberant environment when the classical antenna techniques cannot be properly applied. These techniques
use simple radiation model (plane wave - spherical wave) that do not take into account all the diffraction
phenomena ; they may be quite important in the low frequency ranges. The identfication technique that has
been applied is based on the use of a finite difference model that takes into account these phenomena.
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Figure 1 : Representation of the Sound Pressure Levels (SPL) in dB
observed on the spherical surface of radius 2A.

Figure 2 : SPL obtained with the 6 reference sources
on the observaton spherical surface of radius 2A.

Figure 3 : SPL obtained with 8 identification
sources. Pressure modulus identification and sources. Active intensity identificaton and
minimization of ¢,(A). minimization of ¢1(A).
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technique.

Figure 5 : Geometrical configuration of the acoustc enclosure solved by means of a finite difference
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Figure 9 : Total acoustic power levels obtained for
the rectangular source with various values of a.
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Acoustic power levels obtained for

the 6 surface sources when a = 0.3.

Figure 8



