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Abstract

Prediction of averaged vibrational response of coupled fluid-structure systems is dealt with in
this paper. The focus is the Donnell-Mushtari cylindrical shell with an internal acoustic fluid, a
typical example of waveguides with multiple transmission mechanisms. ”Ezract” and statistical
approaches are developped for this system. A state vector approach is first proposed; it allows
the characterization of propagating modes from a general manner. This propagating content
leads to the formulation of the Local Energy Approach as well as the SEA for this canonical
problem.

1 Introduction

The high frequency behaviour of complex structures is a subject of increasing research and
interest. Deterministic approaches reveals inadaquate in high frequency range and from a stati-
stical point of view : Uncertainty exists in the geometric or material properties of the mechanical
systems. Among alternatives proposed for the frequency analysis, the well known SEA [1] as
well as the Local Energy Approach [2,3] are considered in this paper.

The proposed work investigates the energy aspects of a canonical fluid-structure problem, more
particularly fluid-filled pipes. Up to now, the high frequency analysis of such structures by
means of S.E.A or alternatives remains an important issue and a susbject of research and de-
velopments, due to the intrinsic dynamics involving fluid structure coupling effects.

From a state space formulation of the problem, the propagating behaviour of such systems is
easily obtained. The propagating content when used according to a number of assumptions
discussed in the paper leads to a relevant representation of energy exchanges between propa-
gating modes and to the energy spread within ”subsystems”. On the one hand, an SEA model
is identified according to the propagating contents. On the other hand, the same inputs allow
a Local Energy Approach to be written. Comparative results are given in order to show the
robustness of the proposed methodology.

2 Formulation of the propagating approach for an
elastoacoustic problem

The problem, which is considered here is a basic elastoacoustic problem (Figure 1). It consists in
a cylindrical shell with an internal acoustic fluid. The shell obeys the Donnell-Mushtari theory
[10], and the linearized Helmholtz equation characterizes fluid behaviour. In the following sub-
sections, a state space formulation is summarized and the propagation for the elasto-acoustic



problem is discussed.

2.1 Structural shell Dynamics

Fi1G. 1: A Donnell-Mushtari cylindrical shell.

h,a respectively designate the thickness and the radius of the studied cylindrical shell. E, v
and p will respectively denote the Young modulus, Poisson coefficient and the mass density of
the material. u,, w represent the axial and the bending motion of the shell. ¢ will be associated
to the bending motion w. The normal, transverse forces as well as bending moments are respec-
tively N,,T and M,. For the axisymetric dynamics, the functional associated to the undamped
Donnel-Mushtari cylindrical shell theory can be found to be:
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where C' = 1]fﬁ2 and D = #}_‘;) The time dependancy of motion is assumed to be e’“t. The

upperscript s in all what follows designates variables linked to the structure. Let’s define u()
and f©) by:
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The equation of motions can thus be formulated from the functional as [2]:
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ﬁ(s) is a simplectic 6 x 6 matrix and H (%) is found to be symmetrical. This symmetry establishes

the mathematical properties of the the state-space equation [8]. The latter appears to be a
simple presentation of the equation of motion, and it can be compared to the expressions given
by Wang [5].



2.2 Fluid-structure functional

The bounded internal acoustic fluid inside the pipe (volume ) is governed by the linear Hel-
moltz equation. Considering 02 as being the internal boundary of the bounded fluid and de-
noting n its unit normal, it comes:

Ap+k?p=0 in{ (a)

g—z = ppw?w on 09. (b) (4)

with k = w/c real valued. The functional associated to the first equation and the coupling
between the two media, namely equation (4) are introducted by:
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Finally, the functional of the coupled fluid structure problem considered here can be summarized
as follows:

F=F@ 4 FO) 4 Floo) (6)

The state space formulation for the coupled fluid structure problem needs to be considered
now. It will be achieved by using a particular approximation of the acoustic field.

2.3 propagating approach formulation

In the high frequency range, the non-planar dynamics in the fluid has to be taken into account.
The acoustic pressure field p(r, 8, z) is approximated using suitable decomposition functions. A
separation of variables is proposed by Finnveden [9], who used a finite element discretisation
with polynomials of high degree for the fluid section. Here we propose the decomposition of
pressure on bessel functions: for the axi-symetric motion, an appropriate approximation of the
acoustic internal field can be shown to [11]

p(r,0,z2) Z\/_Jo i(2). (7)

where 9, designate the jth root of the Bessel function of the first kind. It should be noted that
the orthogonal Bessel function properties secure convergence of the given approximation. Using
the given decomposition with combination of the coupled functional of the problem (6), one
can readily obtain the following state space formulation for the coupled elastoacoustic problem:

L " poyo (8)

where the state space vector and matrix A © are [2]:
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The expressions of ﬁ(c), B, ﬁ(s),ﬁ(s),g(s) are added in Appendix. The matrices ﬂ(“) and

g(“) are diagonal such that:

@ _ 1. @ _ 2 2 g2
The state space formulation for the coupled elastoacoustic problem is now established. Fun-
damental solutions of (8) are exponential dependent. The generalized eigenvalue form, of the
following expression

i kjﬁ(c)zg-c) — Q(C)V(-C), (11)

—J

provides the wavenumbers k; and associated propagation modes Kgc). This determination of
propagation is a numerical alternative to non-linear approaches used by Fuller [6]. The propaga-

tion for dissipative waveguides is also possible. In this case H (© hecomes complex symmetrical.

2.4 Results and comments

Dispersion curves are given in the case of a steel shell filled with water. The mechanical /geometrical
characteristics of the system are summarized in Table 1.

h/a p i c E v n
shell | .05 | 7800K g/m? - - 19.2e10N/m? | .3 | 0.01
water | - - 1000K g/m? | 1500 m/s - - | -

TAB. 1: table of characteristics

Fi1G. 2: Dispersion curve for the Donnell-Mushtari cylindrical shell coupled with an internal
fluid.

2 is the non dimensional frequency Q = wa/cg, where ¢, = y/e/ps/(1 — v?) corresponds to the
extensional phase speed of the shell material. It should be adressed that convergence is reached
with a small number of approximation functions for the pressure field. Figure 2 gives the real
and imaginary parts of the wavenumbers extracted from the state space formulation obtained
in the damped case. For the comment of the dispersion curves, we can refer to Fuller [6]. In the
low frequency range, the first branch corresponds to a fluid mode. When frequency increases,
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coupling effects takes place, involving radial displacement. At the beginning, the second branch
is essentially a dilatational mode. Around the ring frequency (2 = 1), the pressure in the fluid
becomes close to the release dilational mode. In the frequency interval Q € [0,2.5], up to 5
modes can propagate far from the discontinuities in each direction.

3 Local Energy Approach formulation

In this section, the Local Energy Approach as well as the SEA for the canonical problem
considered in this paper will be derived. The latter will be extracted from the global energy
balance given by the LEA.

3.1 Basic Energy formulas from the propagating approach

The propagating approach exposed in the previous section provides a set of J-orthogonal pro-
pagation modes [8]. They form a new basis for the dynamical motion of the elastoacoustic
problem. In fact, the state vector can be expressed as the linear superposition of the given
propagation modes:

Y(z) =

|I<

1(2) (12)

V being the matrix of 2n propagating modes computed from equation (11). Indeed, the com-
putation of the kinematic solution can be provided using the change of variables (12) and a
set of suitable boundary conditions. In the context of this paper, the problem represented in
Figure 3 will be considered in depth.

'Ue:v

F1G. 3: Pipe excited on z=0 with a mass/spring-damper system on z=L.

The acoustic boundary conditions written in terms of the state vector components are as follows:

F900) = ~ Vs G)
FO(L) = 6, (13)
with Kq = —Mw? +iCw + K

The propagating vector u(z) can be separated into right-propagating wave vector Ko and left-
propagating wave vector designated by p, . The boundary conditions can be ertten in terms
of waves as follows:

pL(0)=C (0)+p _,  p,(L)=C%p (L) (14)



where pis the incident wave associated to the imposed speed at z = 0. The expression (14)

corresponds to the reflections of both ends, where C") and C® are the generalized reflection
matrices. To complete the wave analysis of the given problem, the wave transport phenomenon
must be introduced. The relation between the wave vector at any section and the boundaries
is thus given by [14]:

Expressions (14,15) provide the solution system of the elastoacoustic problem in terms of wave
vectors . Reconstruction of the state vector solution is then readily obtained using expression

(12). Expression of power flow II(z) in the elastoacoustic waveguide can thus be computed as
follows [2,15]:

11(:) = =22 Y0 (2) LY ) = 4 (2) P () (16)
with:
A (1)

In the case of dissipative waveguide, the power matrix P is full. So out-of-diagonal terms contri-
bute to the power flow at any section of the pipe. The computation of energy densities (kinetic
and potential) can also be done in a similar manner.

3.2 Energy balance at boundaries

From a partition of p into incident waves (u,) and scattered waves (u) one can easily define
the incident and reflected powers at the boundary 2z = L using the following bilinear forms:

F1G. 4: Scattering of propagation modes jg, on the boundary (2).
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The following definition for power matrices insures that the reflected power is smaller than

incident power :
P P 0 0
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Phase fluctuations of the waves p; can be related to variations of frequency, uncertainties on
length of the guide, the Young Modulus... Owing to relation (15) the difference of phase between
two different propagating waves varies far from discontinuities. Between two incident waves on
one singularity, the propagation from the opposite boundary insures that their interference
contribution P juj. (L)ur; (L) to power flow balances can be neglected. Incident waves are thus
assumed to be uncorrelated in what follows. In addition, the reflection coefficients do not
always induce enough phase fluctuations, so that interferences between incident and reflected
wave and between reflected waves cannot be neglected in any averaged power flow balances.
Uncorrelation can be interpreted by a statistical model with the following esperancy hypothesis
E(pi (L) g, (L)) = 05E(|pur,(L)|?), where £ designates the expected value[2]. New parameters
denoted oy, are thus introduced for the LEA derivation to represent £(|uz,(L)|?). In this model,
the incident power < II; > can therefore be written as:

n
< (L) >= Y _ P01 (L). (20)
For a unique incident wave p;, at the boundary, the exact ratio between incident and reflected

power is supposed to be verified by the LEA, so that:
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where Pcyp,; and Pcg,, are the matrix coefficients of the incident and reflected power after
condensation on the incident waves, precisely :
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The reflected power can be thus expressed using the LEA incident waves oy, (L) as follows:

<Ig >= Z

The reflected waves Mo = C' ;p1; tend to uncorrelate themselves away from the singularity. One
can asymptotically establish that Vz # L the mean value of reflected power, initially expressed
in terms of reflected waves can be derived under the following form:

J(L). (23)
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This expression (24) specifies the distribution of reflected power on the reflected waves for the
LEA. New parameters denoted og, are associated to reflected waves &£(|us,])*. The reflected
power < IIg > is sought under the following form:

ST 5= 3 Prinnios (D) (25)



Eventually, an intrinsic relationship linking the incident and the reflected waves o, and og, has
to be written. This is done by introducing the efficiency matrix E so that:

(2))2
_ : (2) _ |G| Pes;,;
og5(L) = E® 0/(L) with E}; = P .. (26)
- L Y ParggmiCY? Peny
q

The first ratio in Ef? specifies the partition of reflected power on the reflected waves. With the
second ratio, the LEA model verifies the power balance for any incident wave. This definition
of efficiency matrix insures that at conservative discontinuities the power flow vanishes. In the
case of non-conservative boundaries, the intended sign of power flow will be respected. For the
boundary z = 0, a similar relation can be found, with the adjonction of a excitation term o, :

op(0) = EV a(0) + o, (27)

This expression comes from the uncorrelation assumptions. The injected power II;,; = II(0)
can be parted in five terms

iy = Mg + 17 (0) — Mg (0) + Tleg,1(0) + Tleq,5(0).

II;,; denotes the injected power when the duct is semi-infinite. The terms II;(0)and IIg(0)
represent the incident and reflected power flow due to the incident waves coming from the
opposite boundary. Il., 7, [I.; ¢ are the contribution of interferences between excitation and
incident- reflected waves. As the excitation can be viewed as a source of waves, decorrelated
from the incident waves pir,;, the hypothesis £(u7,.(0)ptes;) = 0 can be used. As this singularity
is conservative, the LEA power balance on the first boundary may be written as

< Hm] >= Hmf"‘ < H[(O) > — < HS(O) >= Hznf

In this case, the injected power is the one of the semi-infinite pipe. Also, the source contributes
in an independant manner to power flow going out of the singularity. As the propagation tends
to uncorrelate the waves, the injected power flow can be asymptoticaly distributed on the
out-going waves :

Pii ex; 2
f)i,io-e:ci = mnmf = f)i,ire:vinmf (28)
q

A more detailed discussion on the subject of power flow balances and uncorrelation can be
found in reference [2].

3.3 Energy balance far from singularities

The wave guide can be analyzed using a similar way : it can be viewed as a junction between
sections S(0) and S(L). In the two propagation vectors p(0) , u(L), one can distinguish incident
and reflected waves on the guide, as shown in Figure (5).

Fi1Gc. 5: Wave transport between two singularities.



It can be easily shown by using similar power balances and uncorrelation hypothesis as used
before, that:

a(L) = D(L)D(L)" a(0). (29)

The system of resolution on ¢ can be constructed with equations (26), (27) and (29). It may

be written as
5(29) - ()

The reconstruction of power flow at any section of the wave-guide is through-out. The bilinear
forms of the kinetic and potential energy on the sections can be determined by using the
matrices of the differential system. For example, the potential energy is calculated by :

Ep(z) =" " (2)Ku(2) (31)

Away from boundaries, the simplified model will give smooth energy levels with the following
expression
2n

< Ep(z) >= > K, ,0;(2) = K, o(z)
j=1 —

< Ee(z) >= ) Mﬂj,jaj(z) = Mu(d) a(2)
Jj=1 -

Hencefore, determination of the LEA unknowns leads to the reconstruction of the energy pa-
rameters far from singularities.

3.4 Results and comments

The example proposed before is considered here. Table 1 summarizes the parameters used.
The absorber characteristics are as follows: The mass of the piston, the dissipation and the
non dimensional natural frequency are respectively M = wa?L/100,¢ = 0.05,9Q,, = 0.28. A
first computation involving the propagating modes was first performed. It allowed calculation
of energy density and energy flow without any simplification. This computation provides a
reference results for the LEA validations. Using the developments given below, the LEA model
of the fluid-filled pipe was performed.

. @ ‘ )
energy density 10" power flow 4
——  1/3 0.b. energy density ——  1/3 0.b. power flow
- — - LEA prediction - — - LEA prediction

107 107 10° 107 10°
Q Q

Fia. 6: Comparison between LEA and exact calculation. Energy (a) and power flow (b) on
the section z = L/2 of the pipe.



Figure 6 gives a comparison between both computations on the section located at the middle of

the pipe. Ratio of the energy levels to the one of a rigid semi-infinite pipe are plotted. This figure

includes a 1/3 octave calculation of the exact energy levels and shows a good agreement with

the LEA prediction. Stiff variations are observed at cut-on frequencies of propagating modes

(3) and (4). In addition, around 2 = 0.8, the two first propagating modes change of nature [6],

involving frequency variations in the repartition of energy between propagating modes.
(a) )

0.25 T T T T

——  Non rigid pipe 10° |
- — - rigid pipe

- — - propagating wave (1) 4
——  propagating waves (1) and (2)

, ,
10" 10°
Q

F1G. 7: (a): Reflection efficiency of boundary z=L. rigid and non rigid pipes. (b): Contribution
of wave (1) and waves (1,2) to total energy on section z = L/2 for the LEA model.

In Figure 7(a) is represented the energy transmission of the wave (1) to the piston/spring-
damper system, for the studied and rigid pipe cases. In the case of the rigid pipe, the maximum
of absorbed power corresponds to the natural frequency of the terminaison system; the fluid
structure coupling notably modifies the interaction between the first wave and the 1ddl sy-
stem when the frequency increases. The second result presented in Figure 7(b) considers the
propagating complexity role within the context of LEA computation. In this figure, the LEA
results can be compared when several propagating modes are successively taken into account.
In low frequencies, the propagating mode (1), which is very close to the plane acoustical wave,
contribute in majority to the dynamics of the pipe, as it is easily excited at the boundary z = 0.
Over 2 = 0.8, this wave changes of nature (the energy is predominant in the structure), and
the second wave, becoming a ”fluid wave”, holds the majority of energy in the section.lt clearly
shows, that very poor predictions are obtained when a single propagating mode LEA compu-
tation is proceeded. This result confirms the interest of the proposed propagating approach, in
view of high frequency modelling of dynamics.

4 SEA considerations for the elastoacoustic problem
With the previous developments, a relation between the vector ¢ at one section and the injected
power is straightforward : using relationships (30) and ¢(z) = D(z)D(z)* a(0), we have

Q(Z) = Q(z)fem < Hm]’ >

With the propagating approach, The potential energy of the duct can also be related to the
injected power. The obtained levels are smooth and are based on underlying uncorrelation
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assumptions:
New < E>=< Hinj >
with

()™ =t (K, + M,®) / Q) dor,
z=0"

In this expression, no hypothesis is made on the nature of the excitation which is located at
one end of the guide. The approach, developed on a single system in this paper, can be applied
to coupled systems and can give the global matrix of coupling loss factors.

L

0.012

0.008 -

0.006 -

Ne

0.004

\ )
[
0.002 N
\\

Fi1G. 8: SEA parameter n. of the pipe-1ddl system

In Figure 8, the drastic variations of the damping loss factor correspond to cut-on frequencies.
The dissipation effect is more important in the lower frequency range, when the first propagating
mode, which strongly interacts with the right boundary, is predominant.

5 Concluding remarks

In this paper, formulation and generalization of a propagating approach to elastoacoustic pro-
blems have been presented. The propagation approach provides a relevant description to the
statistical analysis of power transfer. The propagating modes are used as a set of input data in
view of the definition of the Local Energy Approach as well as the SEA. The fluid-filled pipe
system given in this paper is an illustration of the general procedure developed for complex
waveguide networks.
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